7 AD-A118 211 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 9/2
A MODEL FOR ESTIMATING TACTICAL SOFTWARE MAINTENANCE REQUIREMEN=-ETC(U)
JUN 82 W H MERRING

UNCLASSIFIED

ey

DT FiLE copy

i

AD A1132 11

NAVAL POSTGRADUATE SGHOOL

Monterey, Galifornia f

THESIS

A MODEL FOR ESTIMATING
TACTICAL SOFTWARE MAINTENANCE
REQUIREMENTS

by .

\l‘,..h

Wwilliam H. Merring, III *\ \
VA ALG 16 1982
June 1982 e, %

D. C. Boger /\

Thesis Advisors:

R. Modes

Approved for public release: distribution unlimited

ge 08 16 171

SECUMTY CLASMIPICATION OF THIS PAGE (Thes Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLE e PORM
AN LML L L “GOVT ACCRISION O] 3. RECIPIEuTTS CATALOC numBER]
AD IZI L g2 1
8. TITLE [and Subtitte) 3. TYPE OF REPOAT & PENMOD COVERED
R A MODEL FOR ESTIMATING TACTICAL SOFIWARE Magter's Thesis
MAINTENANCE REQUIREMENTS 1982

8. PERFOMHNG ONG. REPCART NUNBER

) Y. AuTHOR o) 8. ({441 AnY wum ®)
William H. Merring, III

S ERvORu NG ORGANITATION NAME AND AGOAEES - RROdRAN ELEWENT PROECT T asK

& WORK UMIT NUNMBE RS
Naval Postgraduate School ::
Monterey, California 93940 i

1. CONTROLLING OF FICE NAME ANO ACDRESS 12. ARPORY OATE !

Naval Postgraduate School .ﬁ%i?'z.m“
L Monterey, California 93940

D NG ACGENCY NAME & AODRESN(!! Sitlerant fram Centreiling Offiee) 6. SECURITY CLASS. (of Mo rapers)
Unclassified

‘Wmm—"
scneouLe

e Biat MU TION STATUMENT (ol this Repert)

Approved for public release: distribution unlimited

17. OISTRIBUTION STATEMENT (of the sbetract entered in Blesk 20, il dilterent em Repart)

e ———————————————
18. SUPPLEMENTARY NOTES

9. KLY WORDS (Continue an revered side Il nesvssary and tdansily oy Sleeh number)

Software Maintenance
Tactical Software Maintenance
Software Microestimation
Software Metrics

20. ABSTRACT (Continue an roverse side if nesssodsy and idantify by biesk mumber)

) /,,}-r/?’ Recent studies have pointed to ths increasing burden that is software
maintenance. The maintenance of tactical aystems software will demand re-
sources that exceed those axpended during the development phase as their
numbers and time-in-gervice increase. This increased demand for resources
requires more effective management of the maintenance phase and development
of the software with maintenance in mind.

This thesis presents those items that should be considered and utilized

DD ,"S™, 1473 toimon o 1 wov 68 13 OSsOLETE

448 73 1
$/M 0102-014: 4001 | 1 SRCUMTY CLASIPICATION OF Twis PAGE (hom Date Bered)

gosomTy o ssntictTion 90 Ton PASTNe e S
20. (continued) 1
> during the development phase to reduce maintenance costs over the life-
cycle of the system. It also presents a model that uses the known con-
figuration of the program to estimate the maintenance personnel require-
' ments for that system. These requirements will be estimated from the
beginning of the maintenance phase to its completion. The model utilizes
the technique of measuring the characteristics of the software to obtain
’ the estimation.
»
!
1
Accessilo&"ﬂ"
NTIS CTAe)
tDTIC TaB o
' Unannouneed 5
Justiffcatior .. .~ .o
By - oo e e
pistritnation/ _
Availanil vy Cedes |
- Av2.l oo, o
pist, | Specicl
N '
Wz‘
DD im'mJ 1473
W
' S/P} TB‘“‘“"““ SECUMTY CLAGHPICATION §F THIS PAGEIThon Dote Bnreced)
|

i i - o - —

Approved for public release: distribhution unlimi+ed

A Model for Estimating Tactical Sof+wvare Maintenance
Requirements

by

William H. Merring, IIX
Captain, Unitad States Marine Corps
B.S.X.E., Rutgers University, 1976
M.S., University of Southern California, 1981

Subaitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTENS

froa the
NAVAL POSTGRADUATE SCROOL
June 1982

Author: __M%P
Approved by: kD"*- Q &

57 Thesis Co-advisor

Thesis Co-advisor

Second Reader

Dean of Information and Policy Sciences

it -

&

ABSTRACT

Recent studies have pointed to the increasing burden
that is softvare maintenance. The maintenance of tactical
systeas software will demand resources that exceed <those
expended during the development phase as their numbers and
time-in-service increase. This increased demand for
resources requires more effective management of the mainte-
nance phase and development of the softwvare with maintenance
in mind.

This thesis presents those iteams that should be consid-
ered and utilized during <the development phase to reduce
maintenance costs over the life-cycle of the systen. It
also presents a model that uses the known configuratiom of
the program to estimate the maintenance personnel require-
ments for that system. These requirements will be estimated
from the beginning of the saintenance phase to its coaple-
tion. The model utilizes the technique of measuring the
characteristics of the software to obtain the estimation.

I.

II.

IlI.

Iv.

TABLE OF CONTENTS

IMRODUCTIO“ L J - - L J L] L J L J L L] - L d L] L * L - - L J

A.
P.

CONTEXT OF THE STUDY AND BACKGROUND
PORNAT OF THE THESIS ¢ o« ¢« ¢ ¢ ¢ ¢ o o o o &

DESIGNING SOFTWARE POR 4 AINTAINABILITY .« . « «

A.
B.
C.
L.
E.
r.
G.
He

SOFPTWARE LIFE~CYCLE . 2 ¢ ¢ ¢ ¢ o ¢ o © o o
REQUIREMENTS ANALYSIS . ¢ ¢ o ¢« ¢ ¢ o o o o
SPECIPICATION PHASE .« ¢ « o ¢ o ¢ ¢ o o o o
DESIGN PHASE ¢« o« o =« ¢ ¢ v ¢ @ ¢« o o« a o o »
CODING « ¢ © ¢ ¢ e ¢ o o ¢ o ¢ s 0o s 0 a s o
TESTING PHASE ¢ o« ¢ o ¢ o ¢ « ¢ o« ¢ o o o @
MOVENENT INTO THE MAINTENANCE PHASE
SUMMARY ¢ ¢ ¢ ¢ ¢ ¢ ¢ 2 ¢ o ¢ o o« ¢« o« o « @

SUGGESTED NODEL POR ESTINMATING PERSONNEL
REQUIREMENTS DURING MAINTENANCE . . ¢« ¢« ¢ o ¢

A.
B.

C.

INTRODUCTION . & o ¢ ¢ o « o @ « o 2« o o = =«
DEVELOPHMENT OF S ETRIC TO ESTIMATE CORRECTIVE
MAINTENANCE WORKLOAD < ¢ « ¢ ¢ « o © o o o o
1. Bebugging . o « ¢ ¢ o o ¢ a o o « o o o
2., Implementation of Bebugging &
3. BEstimation of Corrective Maintenance
WOTK10Ad 2 =« ¢ ¢ o @ o o © o« o o o o o o
DEVELOPHNENT OF METRIC TO ESTIMATE ADAPTIVE
MAINTENANCE LOAD . ¢ o ¢ ¢ o © @ o ¢ o o = o
1. Use of Halstead's Bffort Netric as a
Heasure of the Prograa Coamplexity . . .
2, BEstimation of Adaptive Maintenance
WOorkloadd . 2 o ¢ o ¢ ¢« ¢ o o o a e o o =
BODEL AGGREGATION . o« ¢ © o @ o o © o © o o
CHAPTER SUMMARY . 2. o ¢ @ o o o o o o o o o

co-c w SIO'S e * * - - L J L J L] L 4 a - L] L] L] L L J o *

LIsr o' nxr!n B'cxs [] [L J L] L * L] * L] L -* . L] L] L] Ld L J *
INETIAL DISTRIBUTION LIST ¢ o « ¢ ¢ « o ¢ « o« « s o o o

10
12
12
12
1
16
18
20
21
26

28
28

29
29
30

36

36

37

a1
43
45
846
as8
52

LIST OF TABLES

I. program Test HiStOoCY. « o o o o o o o o o o o o o 22

LIST OF FIGURES

2.1 Softvare life cycle phaseS. . « ¢ ¢ « « « =« « « 13
2.2 Software life cycle: per error fix cost per

PhasSe. ¢« &« ¢ o ¢ ¢ e @ @ 2 ¢ 2 o s s o e o o o 15
2.3 Structuring the maintenance process. . . . « « « 25
3.1 Softvare maintenance improvements with

structured Progra’®@ming. . « « o« ¢ ¢ =« o ¢ o « « 35

e R — b, - - R 44‘

d i

I. LBTRODUCTION

A. CONTEXT OF THE STUDY AND BACKGROUND

The maintenance of software that has been acquired and
made operational by the government is a growing concern.
The number of tactical computer programs in service and
those under development will increase the future requirement
for more effective and detailed planning of all resources in
the software maintenance area. Not only the nuaber of these
systess, but also the length of time that these systeas
remain operational will add to the reqnirement for more
effective maintenance amanagement. This wmanagement will be
especially demanding with regards ¢to personnel requirements
since this will potentially be the most expensive and Aiffi-
cult single resource to manage.

The HMarine Corps Tactical Systeas Support Activity
(ECTSSA) has the Marine Corps responsibility for maintenance
of the softwvare of tactical systems [Ref. 1]. The objective
of this research is o0 present the current ideas in softvare
engineering and maintenance. This study was coampleted with
HCTSSA's fanction in aind, but this should not be construed
as limiting the ¢tenets outlined in this paper as being
limited to NCTSSA. They should be applicable in varying
degrees to all softvare projects.

It is important at this point to realize that good main-
tainability begins very early in the softvare developament
process and can only be planned from the beginning of the
systea life-cycle. Atteapts to iaprove maintainability late
in the project are potentially hazardous to the integrity of
the softvare and extremely can be expensive. The inclina-
tion on the part of the developers to reduce near-term costs

-

at the expense of maintainability almost ensures <¢hat the
effort expended later in the life-cycle will far exceed any
ismediate advantage.

Most of the literature available on softvare maintenance
ard its related aspects falls into the area of general
purpose computinge. Little of the current information avai-
lable specifically addresses tactical computer software.
While this initially appeared to restrict sources of infor-
mation, it became apparent that, even though there are some
definite differences between tactical and general purpose
computing, they are less important than the similarities.
The particularly demanding parts of tactical systems are the
real-time requirements or scheduling constraints, and the
"critical" or "life-and-death"™ nature of their decisionms.
In the bulk of general purpose software these features are
either not present or not present to the <same degree.
(Ref. 2). The software will to a great extent be similar in
composition even if the requirements differ. Additionally,
many of the processors that the tactical systeas are based
on wvere originally designed for a commercial or general
purpose systeams.

Softvare maintenance, for the purposes of this paper,
vill Fke defined as those actions which are <taken to repair
or beneficially alter the software in a systea that leaves
the majority of the instructions in the program unaltered
and the designed function of the system intact. Softvare
maintenance has been divided into two types, corrective
maintenance and adaptive maintenance [Ref. 3]).

Corrective maintenance is that nmaintenance which |is
required to repair errors or improve the functioning of the
softvare vithout altering its primary functions. The latter
part of this type of maintenance would concern itself with
essentially perfecting the prograas or wmaking thea nmore

machine efficient. The repair portion would consist of
fixing errors. These errors can range in degree from an
error tha*t results in total failure of the syster to an
error that is bothersome but has no effect on performance
(Ref. &]. The second type of maintenmance is that of
enhancement or adaptive maintenance. This occurs when a
minor change in the function of software is desired. This
change can iaprove the system by increasing its capabilities
or changing its operation to the form that the user desires
at some time after ¢the system has been nmade operational.
The changes made should leave most 5f the systea's softwvare
as it was.

Software wmaintainability is <that degree to which the
sof twvare can be changed or corrected. It is the degree of
ease the nmaintainer has in understanding the software and
then applying the proper corrective action or integrating
the desired enhancement. Software reliahility is the extent
to vhich the program performs its designed functions accu-
rately and in a timely manner. These two concepts will be
related to each other throughout the life of the software.

B. FORMAT OF THE THESIS

This paper has been broken into two main sections. The
first section will describe <those methods <that should be
used early in the life-cycle of the software. The objective

£ this section is to present those ideas that should have
their greatest affect on reducing the total life-cycle cost
of the softwvare with emphasis on reducing the costs of the
maintenance phase. It {s important to stress <that extra
time or amoney spent early in the project can reduce costs
later in the 1life-cycle of the softwvare at an extreamely
favorable rata.

10

~ - ——————— . .

Y

[P
.

The second section of <the paper will deal with
presenting a proposed model for ¢the predicition of the
personnel required for maintenance of a systea's softwvare
once MCTSSA assumes full responsibility for this function.
An important feature to note in this model is that it is
based on the known and quantifiable parts of the software.
The programs have already been written and thus MCTSSA will
know what they consist of. This fact alone should aid the
predictive capabilities of the model.

"

- ————— s .o -

II. DESIGNING SOPTWARE FOR NAINTAINABILITY

A. SOFTHWARE LIPE-CYCLE

The software life-cycle can be divided into six distinct
areas. These are Requirements Analysis, specification,
Design, Coding, Testing, and Operations and Maintenance (see
Pigure 2.1) ([Ref. 5]. Bach of these areas can be further
broken into sub-areas and oftemn overlap. Only those items
that are pertinent to maintenance will be developed.

Be REQUIREMENTS ANALYSIS

During the requirements analysis the type of system and
its capabilities are identified. This process takes place
between the user and the developer. Although in the past
this phase has been considered less important, it is both
critical to successful maintenance and difficult. It is
critical because one must ensure that the user's require-
ments are met and it is difficult because this phase has not
lent itself to the kind of structuring that allows a cook-
book or step-by-step approach. The user and developer
during this phase attempt to determine *the user's needs, a
step vhich is often difficult to accomplish with the tech-
nical tools avalilable to conduct the project (Ref. 6].

Iteas that are important to consider during this phase
which iamprove subseguent maintainability include, Ffirst,
identifying the maintenance group (in this case MCTSSA) and
including them in the review of the system requiresents
(Ref. 7). The purpcse of this is twofold, first, to deter-
aine the wmaintenance facility's capability to support
maintenance and to allow the maintenance managers ¢to begin

12

[P

Requirements Analyslis

Specification
Design Software
Development
Process
Coding
Testing
Operatfons and Software
Maintenance Ma {ntenance
Process

FIGURE 2.1 Software Life Cycle Phases.

Source: McClure c-rna 5. Wm
van Nosirand Relnho y. Flgure 3.1, 0. 3.

planning for the maintenance phase >f the project in rela-
tion to the other systeas currently operational. Second, it
is a* this time that thought should be given to developing
schedules of priorities, enhancements, and resource alloca-
tion. The enhancement portion wouldl be extremely difficult
to define precisely, but planning for it needs ¢to be
conducted in some form as experience has shown that this
accounts for, on the average, forty-two percent of the
maintenance effort [Ref. 8]. This early identification of
enhancements should afford the mainterance facility enough
lead time to begin considering its support requirements.
The previous experience of the facility in dealing with
enhancements should also al low it to make an estimate of the
enhancement rate. The developaent of enhancement estimation
should include dJdata gathered from both the vendor and the
facility. This requires the establishment of a database
that deals with these areas and is readily available %¢o the
managers of the softvare maintenance facility.

C. SPECIFICATION PHASE

It is during the specification phase that the functions
of the systea are defined. This has to be done with the
user to ensure that his requirements will be nmet. Pailure
to accomplish this will result in costly corrections either
before acceptance vhen discrepancies arise during testing or
later when adaptive maintenance has to be done to bring the
systes in line with the user's needs, Pigure 2.2, the
information for which wvas obtained from the Software
daiptenapnce Guidebook by R. L. Glass and R. A. Noiseux,
shows how the cost per error increases as the 1life cycle
progressas,

This phase should be conducted between the user and the
developer to ensure <that both understand the potentials of

W

7’1-

60

55

90

a5

40

35

30

25

ga"m‘%. Oesign 1splenentation Testing Ma{ntenance

Sour C%

Figure 2.2. Software 1{fe cycle:
per error fix cost per phase.

) R. L. foux, R. A., an
ol 'c'o'-nul".mc'.".‘#wo t'.1-e, p. 10

the system. The user so that unreasonable demands or expec-
tations are not nmade and the developer to ensure he under-
stands what the user requires and explain vhat is within the
capabilities of the current technology.

The specifications give a concise description of the
system's functions to both the user and the developer
[Ref. 9]). The comrleteness and correctness of these speci-
fications will govern the entire project. Good specifica-
tions will afford managesent better estimates of the
magnitude of the project for scheduling purposes.
Conversely, poor specifications will result in software that
cannot be expected to perform adequately or even be useful
for the increased costs that it will create. It is during
this phase that structured prograaming should be incorpo~
rated into the project to specify the structure of the soft-
vare for the design phase.

During this phase the maintainer should be included in
review of the specifications and he should evaluate the
impact on current systeas [Ref. 10]. The latter allows the
maintenance facililty to refine the planning for maintenance
begun during the requirements analysis phase and the former
allows the maintainer to provide insight as to what sections
of the program can be provided through reused code. It is
at this time the identification of those areas that could be
iwplemented through the utilization of reused code should
begin.

D. DESIGN PHASE

The design phase is vhen the structure of the softvare
is actually delineated. The designer develops in detail a
structured hierarchy of modules. This phase is critical as
studies have identified that almost sixty-four percent of
the softvare's errors have arisen from poor design

16

A

{Ref. 11). A vell-structured design will either eliaminate
errors or facilitate detection of design errors early in the
life-cycle of the system wvhen they are least expensive to
fix. This is also the phase during vhich the most videly
accepted methods of ensuring maintainability are instituted.

Structured design is the first of <these wmethods.
structured design consists of following an established set
of procedures for accomplishing the design phase. It estab-
lishes the framevork for the softwvare and, vhen properly
completed, facilitates maintenance The structure or frame-
work of the nmodules should be hierarchial with control
floving from top to bottom in a logical manner with no level
calling on a higher 1level. The top 1level should be the
highest level of control logic present [Ref. 12].

Part of this structure is the design modules, which are
those modules that are constructed Aduring the design phase.
They have been dJdetermined <¢o improve maintainability by
almost eighty-nine percent of their users (Ref. 13}]. The
key aspect of the =modules is <that they should perform a
single function. This reduces their complexity and allows
for both easier error checking and error correction. The
aspect of a single function is iamportant <t¢o mainterance as
it makes the module easier for the maintainer to understand
vhat the module is doing. The capacity of the systeam to use
previously coded modules is increased through <this amethod.
Additionally, the flexiblity of the system is increased
through the plug-in capabil ities inherent in modular design.

During this phase it is again important for the devel-
oper and the prospective maintainer ¢to maintain close
contact. The maintainer is able to provide insight as to
what and howv the current systeas are perforaing and espe-
cially ¢to provide information on what functional asodules
have already been coded and are available from previous

"

pro jects. The object here is to reduce the total effort and
possibly eliminate any pitfalls that have been experienced
in previous designs.

Documentation of the program increases in isportance as
the development of the system progresses. The developer
should ensure that all steps of the process are explained
fully. A1l parts of the hierarchy and modules should be
explained completely to ensure adeguate understanding of
both their functions and methods of implementation. This
vill considerably ease the maintaiper's burden when he has
t0 correct errors cr enhance the systeam much later in the
life of the systeam vhen those vho developed the system are
not avallable for explanations as to why and how, The
maintenance personnel can provide valuable input to the
documentation design by providing information on those types
that have proved especially helpful and easy to use.

E. CODING

This phase is possibly the best understood phase in the
entire life-cycle. However, there are iteas that need to be
particularly adhered to if maintainability is to be
obt ained. The first of these is widely recognized as aiding
both developsent and maintenance. It is <the use of a high
order language. The greatest contribution of a high order
language is that it adds readibility to the progras, <thus
increasing the urnderstanding cf the code. Another technique
that will facilitate understanding of the code is the use of
structured prograsming. This is the grouping of similar
nodules and the use of such techniques as indentation of
inside a progras to increase readability.

Reused code has excellent potential to reduce <the life
cycle ccests of softvare. It can 40 ¢this through reducing
coding and testing of modules, and consolidation of

18

T R _———— =

maintenance through reduction of the total number of unique
modules that need to be maintained. It has been applied in
limited situations with significant improvenents in
productivity and reductions in development and maintenance
costs (Ref. 18]. The maintenance facility would be required
to maintain a library of current modules that are available
for use and in operation. It would also maintain the data
on those modules in terms of error rates, systea locations
and other important inforaationm.

It is Aduring this phase that raused code is inserted
into the prograa where it was identified as being suitable.
Through the reuse of code, not only the coding time but also
the testing effort is reduced. The reused code has been
tested and implemented in other systems and has been proven.
There should be many areas in each nev program that provide
the opportumity for <the reuse of code. A reduction in
required maintenance should occur as one module is repaired,
the change can be applied to all systems using that module
(Ref. 15). The primary advantage in teras of maintenance is
the reduction in the probabilty of errors being generated by
that sodule.

Opon completion of the coding and the checking of the
module ty the programser, that module should be passed on to
be checked by another individual. This checker should use a
checklist that 1identifies the common errors that arise in
prograss [Ref. 16]. The use of the checklist vill iaprove
the productivity of the inspection process greatly. An
exasple of an inspoctidn checklist can be found in T. Gilb's
book on Software Netrics on p. S9.

1 technique that shovs such promise in increasing both
the maintainability and reliabiliecy of softvare is <the use
of dual code. The dual code technique would be iaplemented
during ¢this phase of the life-cycle and consists of

19

e it T

utilizing the structure developed during the design phase to
independently construct two sets of code. While it would
appear to increase costs by a factor of two, it has in its
limited application increased costs over the life-cycle froam
five to ten percent in cases where no <future benefits have
been obtained. In most cases, however, a net cost savings
of up to fifteen percent or a substantial increase in the
quality of the code produced has been realized [Ref. 17].
The advantages of dual code can be manifold. The first,
and most important in terams of <tactical systeas, is the
increased gquality of the software produced. The reason for
this is that the two sets of code will check each other.
The results they produce can be checked to determine if
there are differences bhetween them and thus possible errors.
Therefore a check on the quality of the coding is provided.
This technique would have one program essenrtially do the
work of the desk tester, <thus automating this step in the
process {[Ref. 18). This automation of the desk testing
process should increase the dependability of <the checking
that is conducted. Dual code is also used in conjunction
with the bebugging technique, which will be explained later.

P. TESTING PRASE

The testing phase can be broken into three par+ts: unit
level, integration, and system testing. Unit level testing
is done for each module to determine if it functions prop-
erly. Integration testing is completed next and is done in
either a top~down or bottom-up fashion. It ensures that the
modules will vork properly in the progras environment, The
systeas test is completed next and is done to ensure that the
system neets the specification it vas designed for.

The maintainer should b2 involved in this entire phase
t0o give advice on the test methodology. He has curreat

20

inforaation that concerns systems that are on-line and is
able to highlight likely areas for extra attention during
testing.

Most important during the testing phase is the documen-
tation of <the testing. This documentation should provide
information on the error rate of each module, the type of
error, and difficulties wvith the overall systea. Also
included should be data on the manpower and resources
required on the project to date, broken down by modules if
possitle. Table I contains an example of the data that
should te included on the prograa's test history. This
information is important ¢to the maintainer as it will give
hia some idea as to possible troubls spots in the software
and an overall idea as to the difficulty he will experience
in maintaining the entire prograa. A systea that is diffi-
cult to maintain early in its 1life time will continue to bhe
difficult throughout its entire life and needs to be identi-
fied as such as early as possible.

G. MOVEMENT INTO THE MAIRT ENANCE PHASE

During a study conducted by Lientz and Swanson, it was
determined that the best organization for conducting amainte-
nance is one that performs that function solely. This
facility should be separate froa that of development. They
gave as possible reasons, increased efficiency and greater
control of efforts and reduced costs that arise froa this
specialization [Ref. 19) Additional benefits can occur
through the possible career enhancement of programmers vho
become involved with maintenance.

A tradeoff of a separate nmaintenance function as
compared to one integrated with development is that the
productivity of the saintainers declines vhen fewer of the
original developers are involved in maintenance {Ref. 20].

21

TABLE I

Program Test History.

f , T ORIt Test HISESTY

T T Nuaber or NOJdUISS UaIt rastEY
Average Number of Unit Tests Executed per HNodule
Nuaber of Errors Discovered during _Tes 1ng
Average Number of Errors Discovered in a oduleéUhEu)

Total Number of Statements Nodified to Correct Errors
List of Modules in which the Nuamaber of Errors Dis-
covered Bxceeds UAEM
Types of Errors Discovered
-Hardvare Failure .
-Software Reactisn to Hardware Pailure
-Coding Error
-De51gn Error
-Specification Brror
-Logic Errors
-Computational Error®
-Data Error®]
Avergge Length of Time to Discover and Correct an
Tror

T " Intéqratioh TESt HiISIOTY

T T Number orf IR¥EeqrRAEISH TesStS ER3Icuted
l @ Number ofnzrrors Discovared during Integration

Test

' Ayerage Hugber of Errors Discovered in a uodule!IABu’

[List of Modules in which the Number of Errors Dis-
covered Exceeds IAEM

Total Number of Statements Modified to Correct Brrors

Total Number of Modules Modified to Correct Errors

Types of Errors Discovered

Avergggogenqth of Pime to Discover and to Corraect an

T "Systéa (Kcceptance] Te3t HIStory
== _HGAber O §¥§§rs sTEptancel TestI_EXTCUtET - .
9

Rulbggsg o iscovered during Systea (Acceptance)
Average XKumber of s Discovared per Module (SAENM
LXst gf Modules Ungggeg t0o Correct grrors ('
Tyges of Brrors Digszovered

Avérage Length of TIme to Corcect an Error i

$Error type added by author of this thesis

%rsﬁsplnﬁnﬁn §a oLt £ a0 BB RATRRT SOLSHRRS, ROTEAER090S |

22

This can be partially coapensated through the use of a
"maintenance escort" [Ref. 21) This escort will take part
in the development of the software and, vhen the systeam's
responsiblity for maintenance is transferred, he goes along
with it to provide the needed experience to reduce the
inpitial maintenance effort and iaprove the learning of the
maintainers.

Since programmers will not be constantly in demand on a
specific project, the organization should be constructed
such that departments with experienced personnel are organ-
ized arocund a specific functional area of softwvare, such as
input, arithmetic, output, signal processing or data display
types of software, This would allow <the programmers to
become experts on specific areas. The departments would
consist of functional areas that are common to all projects
and allowv programmers to bhecome experienced with that type
of function. The depar:tments would send the required people
to the <requesting projects on an as-requested basis. TO
ensure familiarity wvith the project, specific programmers
would be allocated to certain projects on a consistent
basis. The objective of this system is to obtain greater
utilizaton of experienced programmers, the alternative being
their complete devotion to a specific project with the
resulting under utilization of their skills and abilities.

The management of softvare maintenance is unique in many
respects and requires attention to some special areas.
Pirst, it should be realized that about twenty percent of
the time the maintainer will actually be employed in correc-
tive maintenance {Ref. 22]. The remainder will be eamployed
in conducting adaptive maintenance. This is important, in
that, vhile it may be difficult to fix bugs in programs, it
iz more difficult and costly to add enhancements to the
softwvare such that it meets the same stringent reguirements

23

of the original product. The @aalntenance of softwvare is a
repeating cycle that requires the same steps, although on a
smaller scale, that were conducted during the development
phase. Pigure 2.3 shows the recommended cycle for including
enhancements,

It is 3important that ¢the addition of an enhancement take
place in much *he same manner as the development process to
ensure that the guality of the software is maintained. The
maintainer needs tc document changes, employ structured
programming and aodularization in much the same way.
Pailure to do so will throughly destroy a good program and
even shorten 1its possible useful 1life. Critical ¢to
conducting adaptive wmaintenance is <the determination of
vhether it is worth the effort ¢to add the enhancement. An
evaluation should be conducted on each proposed enhancement,
to determine if the potential benefits exceed the possible
long term costs. This process when used on small scale
enhancements may prove infeasible, but it should definitely
be required for all enhancements that have the potential for
consuaing large amounts of resources.

Beused code will show an additional benefit in the area
of changes. That is, if a change is required in one module
that change can possibly be instituted in all other
instances of that module. The correction of an error would
then only have to be detected and corrected once, rather
than wvaiting for the remainder of similar modules to err and
require correction.

Essential to the maintenance function is the accumula-
tion of data on the various types of projects that are being
saintained by the activity. These data need to be tabulated
from the beginning of the project ¢to its end and require
completeness. That is the data need to include information
on the functions and modules of the progras. Por instance,

24

MR SR oo .

L0ogr SLend ——.kﬂeouift_l.ﬁl’
Suftware Analysis

[

v

Specitfcetfon

| vefine | |
1 Ooj:cnv}ivonu\a —
DOr cac
Design |

’ check-Point
Review
i
Inplement Coce
noc?ﬂcauon _________
Inspectfon
r
: unft Test
|
i
| Integration Test
!
, 1
Reveifoate System Tost
Softesrs
Y
Acceptance Test

Check-Point
\ Review

Figure 2.3. Structuring the mafntenance process.

Source: McClure, Carme |, W
van Nostrana Relnhola . Flgure 6.2, . .

they should include the error rate, wvhat types of errors,
vhen they were found, and especially how long it ¢took to
find and repair thesa. These data will enable management to
gain btetter insight into the maintenance process and allow
them to form better estima tes on personnel requirements to
conduct this function. Models can prove useful in this
respect, but will prove even more useful when there are data
available to determine their validity. The data accumulated
will provide much irformation on the maintenance process and
its usefulness will cross over into other projects because
of a large degree of common properties in software.

He SUMNMARY

One of the ideas that should have beccme apparent froa
the preceding discussion is that maintenance, quality and
reliability are intrinsically related. Designing for reli-
ability and quality, wvhile not necessarily increasing main-
tainability, will reduce the maintenance costs, if for no
other reason than the elimination of errors. These three
are waore deeply related because the use of structured
progranaing and modularity not only increases maintain-
ability by decreasing complexity but also incrasases quality
and reliablity for the same reason. The human prograamer is
able to comprehend only a limited amount of a prograa.
These techniques allow him to understand what he is working
on and in wvhat context, reducing the probabilty of errors
early in the life of the systea. That is the key to all of
maintenance, making the sof tware as easily understandable as
is possible, thus increasing the capability of the main-
tainer to £ind and repair or add the desired changes. It is
possible to develop reliable software <that is relatively
complex without making it maintainable; it has probably been
done wmore than once. It is easier to accomplish and

certainly less expensive to conduct the software developaent
process with the objectives of reliablity, gquality, and
naintainability when <these tenets are adhered to than it
would be if they are not considered.

The three potential methods to achieve the above objec-
tives are dual code,reused code and bebugging. The latter
will be explicitly treated in the following chapter. Dual
code can increase reliability of code by providing a ready
check on that code to ensure that it is error —reduced.
Reused code should reduce costs through reduction in testing
of modules and coding required. It should additionally
iaprove reliability through the use of previously tested and
proven code. Bebugging will allow ¢the manager to estimate
the error rate of the codes and its maintainability through
some siaple testing procedures. This method is important in
that it provides a measure of the quality and maintain-
ability of the program, thereby improving the planning for
maintenance.

27

ITT. SUGGESTED MODEL POR ESTIMATING PERSOMNEL BEQUIREMBNTS
DUBING MAINTENANCE

A. TINTRODUCTION

Prior to entering the maintenance phase, it is extreaely
important to have an estimate of the resources required to
conduct it. An especially important part of these resources
is the personnel requirements. The people who maintain the
systeas softvare will prove to be the largest single expense
of the maintenance portion of the life~-cycle. There have
been a number of models developed to estimate the develop-
aent costs of softvare and a few have attempted to extend
their predictions to include the maintenance phase
[BRef. 23], [Ref. 24], (Ref. 25]), (Ref. 26]. The eamphasis of
these models is to utilize the functions, size, and applica-
tions of the software to estimate its life-cycle costs prior
to the initiation of development and coding. This is essen-
tially the nmacro approach to 1looking at the overall func-
tions of the system and using them to estimate resource
requiresents,

While in many cases any model or estimating technigue is
better than no formalized technique at all, the construction
of a model should be based on a *horough understanding of
the components of the systaes. This could be considered the
sicro approach. The model presented here is one approach to
understanding that portion of <the life~cycle called mainte-
nance. It atteapts to explain the interactions of the
components of softvare maintenance with a view towvard pred-
icting the resource regquireasents. Pundamental to the model
is the fact that the development phase has been completed
and that the system is in use,

28

Therefore, the size, functions, and applications of the
progras are vell kncwn and can be utilized in the estimation
model. This approach should integrate well with NCTSSA's
role as a maintenance facility as this is the point in time
that they assume responsibility for the software systesa.

The presentation of the model covers the two types of
maintenance that were defined in Chapter I, corrective
maintenance and adaptive maintenance. The objective of the
paodel is to deteraine the amount of effort required to
conduct both types of maintenance.

The sajor assumptions made in this model are that the
development of the system has been completed and it is
currently in use. The maintenance facility is assuming
responsibility for the software and, thus, knows its
content. This allcws for more accurate use of an estisation
model based on an in-depth analysis of the code itself.
Purther assumptions are that the system has been developed
in accordance with the guidelines presented earlier in this
paper. While all guidelines may not have been followed in
every instance, the model is presented such that the reader
should be able to adjust its construction to suit his use.

B. DEVELOPMENT OPF METRIC TO ESTIMATE CORRECTIVE MAINTENANCE
WORKLOAD

1. DBebuggipng

"Bebugging® is a <teram coined by T. Gilb and is
derived from a concept developed by H. Nills that introduces
a number of known errors into a program to calibrate the
error location process ([Ref. 27]. The concept is that of
introducing a known nuaber of errors and then perforsing a
debug exercise on the progras. The objective is to compare
the seeded number of errors detected to the errors that

cccurred naturally in the progras and then use these figures
to estimate the total number of bugs present in the progras.
conducting this test over a specific period of time will
afford a measure of the bug detection rate.

G. Schick and R. fWolverton in their article, “An
Analysis of Coapeting Softvare Reliability MNodels" suamar-
ized the work of H. Mills and the later wvork of S. Basin and
presented a formula that can be utilized in calculating an
estimate of the maximum number of errors presert in the
softvare. That foraula is:

woezye [ROLZ 0D ¢ B
r - k(2)

vhere,

N= maxisum number of errors,

INT= integer value of evaluated expression,

r= number of statements in the test,

k(1)= nuaber of statements in ¢test in which indigenous
errors vere detected,

k(2)= number of statements in test in which seeded
errors were detected,

n{1)= number of statements in wvhich errors were intro-
duced,

M= total number of machine execitable statements in the
systen [Ref. 28].

This formula is based on a count of the statements with
eIrors. The errors are seeded randonly in the entire
prograa and in executable instructions onmnly.

2. Isplemeptation of Bebuaging

The imsplementation of bebugging should be relatively
sinple and straightfoward. The seeding of the program needs

30

to be dcne randosly. This can be done manually or automati-
cally through the machine's use of a predeterained algor-
itha. The error type to be introduced should be considered
at this point. The type of error introduced needs to repre-
sent the proper proportion cf that arror in relation to the
total number of errors. {Ret. 29)]. The type of bugs or
errors considered in this test are semantic. The categories
of semantic bugs are coamputational, logical, and data
(Bef. 301 The syntactic type of bug is not considered as
it should be detected during complilation [Ref. 31] and
design errors are generally considered <too difficult ¢to
artificially introduce. The best amethod for obtaining the
proportion of error types is to refer to the vendor supplied
information on this project and to data that has been accu-
mulated on other similar projects. The errors introduced
should reflect this proportion in order to obtain a repre-
sentative estimate. When the test is run each type of error’
should be calculated separately using the above formula.
This is essential as each type of error will require a
dif ferent degree of effort ¢to repair.

Tvo methods are readily apparent for detecting
errors after the program has been seeded. The <firs:t of
these methods is manual detection by the programmer or
programmers who will be involved in the aaintenance of the
systean. It is important that <those involved with the
maintenance participate in the test to achieve calibration
of the nmodel ¢to the prograsmer's capabilities and possibly
eliminate any variance that could arise from differences in
prograamer skill. This will provide additional information
on hov long it takes for the programmer to detect and then
correct the errors. The test should consist of timing how
long it takes for the programmer to locate an error by type.
This could be accomplished by maintaining a time-segquenced

X} |

listing of when each error was found by type. The detection
rate could ¢then be established for each error <type by
obtaining the average number of errors detected per a
specific time, in this case a man-hour. This rate is valid
if the systea is to be constantly reviewed for errors by
these individuals. The alternative to this method is to
develop a model vhich is able to predict an error rate valid
for the operating cycle. This model would obtain a value
that would show the rate at vhich errors appeared during
operation of the system and required repair.

The second nmethod of obtaining the error count is
through the use of the dual code technique. Dual code
provides two parallel iaplementations of the design specifi-
cations, in either the same or different languages and has
been discussed earlier in section B of Chapter II. In the
bebugging context the seeded or artificial errors are in*ro-
duced into one of the code sets. The tvo code sets are run
in parallel and their results are cosmparsd during running
for discrepancies [Ref. 32). The differences in the results
vill yield, since the two sets of code were coded indepen-
dently, indicators as to where errors lie in the progras.
One set of code will, in effect, check the other through
this process. The code set with the introduced errors will
be used to obtain <the error estimate. This method will
yield only an estimation of the total number of errors and

an error rate per lines of code. It will not allowv one to
detersine the maintainabilty of the code through the use of
programaers.,

Since the dual code method will yield only an esti-
sated number of errors, the two methods of manunal and dual
code should be used together. The reason is to obtain a
check on the number of pro jected errors, and because only
the manual method can provide an indicator as to the tiae

32

h i

required to detect and correct errors by a specific
programser. If only one aethod can be used due to resource
constraints, the manual mathcd is preferred as it provides
three types of information, that of error rate, dJdetect-
ability of the errors, and the maintainability of the code.

Bebugging was selected as a possible method for the
maintenance facility to e2valuate the software for planning
purposes for a nuaber of reasons. It is conducted indepen-
dently of the vendor and allovs verification of his data and
the techniques employed. While discrepancies between esti-
mates are sare ¢to arise, large discrepancies should be
suspect and should subject either the facility's or vendor's
sethods to re-evaluation. The bebugging test is conducted
under the conditions and vith the people that will be preva-
lent during the maintenance phase. The test should be rela-
tively simple to structure and iamplement by the facility.
Additionally, the concepts involved are easy to understand
by those participating.

There are sonme distinct disadvantages to bebugging
that should be discussed. The first is that it fails to
identify the degree of error. The degree of an error can
fall into one of five categories: 1) error which prevents
the accomplishment of an essential function, 2) error which
adversely affects the accomplishment of an essential func-
tion degrading perforsance, 3) error which adversely affects
the accomplishament c¢f an essential function degrading
performance, but has a work~around solation, 4) error which
is merely an operator inconvenience, and S) all other errors
(Ref. 33} As can be seen from the above definitions, the
degree of the error is the extent to vwhich the systea's
functioning is affected and not the cause of the error or
eITOr type. The degree of error and design errors do not
lend themselves to detection though the bebugging technique

3

i

due to thelr complexity. Alternative nmethods need ¢to be
developed in this area.

An additional trouble area became apparent during
research and that is the probleas that occur wvhen repairing
a bug. The possibility alwvays exists for the repair 34
the bug to introduce additional errors through unpredictable
effects on other =modules. The best insurance to insu.ate
against these effects is the preservation of modularity and
the use of information-hiding modules which do not allow the
prograsmer to make any assumptions that could 1later prove
dangerous to the progras. Additionally, <the use of strauc-
tured programaming and the techniques described in Chapter
II, section C should work to reduce +he design errors that
may develop later. This is exemplified by Pigure 3. 1.

The use of bebugging will produce an estimate of the
error detection rate that can be used for planning purposes,
if it is recognized that this is just an estimate and not*
wvhat will occur. The bebugging method can be used
periodically to evaluate the current status of the software
at various points along the maintenance path. The estimates
derived therefros can be used to refine or revise planning
figures. Purther, greater confidence in an estimate can be
achieved through more testing, although at additional cost.

3. [IEstimation of Corrective Hajgtenance ¥orkload

The corrective maintenance workload can be predicted
using the number of estimated errors in the system and the
rate of error detection established by <the prograsaers
during the bebugging test using equation <1>. The error
detection rate as vwell as the nuaber of errors should be
divided into the three types of semantic bugs identified
earlier. The resultant formula should estimate the amount
of corrective maintenance that will be required on the
systes.

60

55

50

45

40

35

30

25

20

15

10

Before Structureg Results

b = - e e e e m — et n e m et e . e e e e e - - - ————— o — - ———

™

16M SAMI YOURDON MCAUTO
trrors Per 10,000 Lines of Code.

Figure 3.1, Software maintenance {mprovements
with structured programmfng,

S e SIS R Do e e ntenecca.

35

T A et .

¥ (c) N(1) ¥ (d)
R e Y R Y @

vhere,
CM= total corrective maintenance required in man-hours,
N¢i) = number of i type error estimated
(c=computational, l1l=logical, d=data)using equation <1>, and
d(i) = the detection rate in errors per man-hour of i
type error.

C. DEVELOPMENT OF METRIC TO ESTIMATE ADAPTIVE MAINTENANCE
LOAD

Adaptive maintance, as previously defined, 1is that
maintenance conducted to isprove ¢the system by increasing
its capabilites or change its operation to a fora that the
user desires after the system is operational. These changes
or enchancements are accoaplished to improve the overall
efficiency of the systea, add new features, or provide
interfaces vith other systeams that wvere not called for in
the original design. The enhancements, in sany cases,
should not substantially alter the original design of the
prograa. If a major redesign is wvarranted, the systea
should be returned to the development phase to ensure that
the design is done properly. The adaptive maintenance
discussed here vill cover those cases vhere amodules may be
changed or added, but the structure of the original programs
essentially resains intact.

The addition of enhancements should be conducted along
the 1lines of <the original development process to ensure
that, wvhile the system is enhanced, the changes are inte-
grated into the system vwith a ainimal degrading effect on

36

1
3

r‘v”“z—?"»—‘f"’ =
N N

per foraance. An understanding of the system to be enhanced
is required. This understanding is governed by the logical
and structural coamplexities of ¢the software. Adaptive
maintenance involves +two major <types of enhancements. A
portion of them involves alteration and a small addition of
code and a portion requires the addition of a new module,
replacement of an older aodule or a restructuring of the
softvaret!'s structure. The degree to which each portion
presents itself during the life of a system is as yet indet-
erainate and will require in-depth study. Experience can
provide some indication as to how often and to what extent
these tvwo degrees of enhancement are made.

1. Use of Halstead's Effort Netric as a Measuze of the
Brogzap Coamplexity

In order that a modification may be made, the indi-
vidual making the change needs to understand the system. The
amount of time he takes before he can begin useful work on
the system is governed by the complexity of that systea. The
degree of software complex ity is inversely related to the
level of understanding. The more coaplex the software, the
less wvwell understcod it will be until wmore effort |is
expended in an effort to imprcve comprehesion.

Halstead's devéloplent of programaing effort essen-
tially realized this. Halstead's effort metric was devel-
oped to analyze the effort required to construct a progras
in a specific language from a preconceived algorithm. 1Its
application in maintenance for using it to rate the
complexity of the software should prove valid. To develop
prograssing effort Halstead used the concepts of prograa
level and voluame [Ref. 34].

frograa level refers to the level of a prograa's
isplesentation. There is a ainimum level of implementation

7

i vhere the fewest number of operands and operators possible
can be used and the program will still function as intended.
This most elegant of implementations is never realized in
fact and some lower program level is achieved. The easiest
language to use would have a program level of one, where any
procedure desired would consist of merely a call on tha%
procedure. This would require an infinite list of procedures
| and is not realizable. Isplementations of prograas will
fall into an area of program level less than one. Use of
this greater number of statements and the consequent expla-
nation results in greater understanding of the implementa-
tion for the person less familiar with the systeam The
difficulty of the comprehension of a programr varies
inversely with the level of that prograa [Ref. 35].
As presented by Halstead, the program level |is
" affected by the operatots present. The larger the number of
operators employed, <the lower the level of implementation.
The minimum number of operators possible is two, where one
would consist of a function designator and the other an
assignment operator. The prograa level is therefore propor-
tional to the ainimus nuaber of operators possible divided
by the actual nuaber of unigue operators [Ref, 36].
Operands 40 not show a similar @asiniaum over all

isplementions. In cases where an operand name is repre-
sented, the implementation is at a 1lowver level <than vas
possible if <the operand vas used only once. The program
level is <then proportional ¢to the ratio of the nuaber of
unique operands to the total operand usage [Ref. 37).
Coabining the two proportionalities and noting that the
constant of proportionality is one, ag this is the maximua
defined value of prograam level, yields the prograa level, L,
as

38

L= K%TT X g{%} <3>

vhere,
n(1)
n{2)
N(2) = the total number of operands present and two is

the number of unique operators,

the nuaber of unique operands,

considered the sinimua number of operators possible
[(Ref. 38].

Program level represents a meaure of how well the softvare
has been implemented in relation %o the capabilities of the
language that has been used. The better the implementation
the closer to one the value of L beconmes.

Prograa vclume recognizes the importance of
obtaining a metric for the size of a algorithm that not only
measures its physical length but also the nuaber of distinct
operations performed in the prograa. The objective is to
allow application to a wide variety of languages. Volume V
has been defined as:

T e

vhere,

N is equal to 1length or N1+N2, the total number of
operators and operands utilized, and

n is the vocabulary of unigue operators and operands or
n(1)+n(2) {Ref. 39].

This volume can be applied to any programsing language and
measures the size of the program in the language coded. 1I*
takes into account the capabilites of ¢the language as
presented by the number of unique operators and operands and
its size as represented by the total number of operators and
operands. Prograa volume represents an overall nmeasure of
the size of a program in relation to that prograam's compre-
hensibility.

To obtain the effort metric, E, Halstead uses +the
ratio of program volume to program level [Ref. 40].

E= V/L <5>

Prom this equation it can be seen that as the prograam volume
increases, the effort or complexity wvill increase and *hat
as the program level increases the effort decreases in kind.
Executing the necessary substitutions to allow for calcula-
tion of the comaplexity of the program the eguation beconmes:
T(E(N) + N(2)) x 1ln(n(1) ¢+ n(2))~

E 1) x §(2 o et EUDL P)
=n(1) x §(2) x in 2

This formula, when used to determine the complexity
of a program in relation to a programmer's debugging perfor-
mance, accounted for over twice as much variance in perfor-
mance as a metric that counted solely the total number of
program statements [Ref. 41]. The resultant value, wvhen
applied to programs on board, will provide an estimate of
the complexity of a prograa, thereby refining the estimate
of the quantity of resources required to make alterations to
the softwvare.

Inplicity treated in the above formula is the way in
vhich acdularity affects the complexity of the program. The
use of wmodules such as functions, subroutines and macros
vill reduce the program volume through their inclusion.
They are performed multiple times during execution of the
program, but will be present only a single time wvhen the
softvare is reviewed or checked. Through their single
inclusion, they reduce the total number of operators and
operands present, directly reducing the program volume and
increasing its comprehensibility. Additionally, as Halstead
indicated, the nuaber of unique operators will increase with
the addition of subroutine or function calls, again reducing

40

the overall complexity of the systea. Interesting to note
at this point is that Halstead, through further development,
has stated that B will vary with the square of the volume
and not linearly in relation ¢to the program’s potential
ainimum volume (the best implementation possible) [Ref. 42).
This also demonstrates that as amodules are added <the
systea's coamplexity is reduced, not 1linearly, but as some
function of the square.

2. Estimation of Adaptjive Maintenance Workload

The estimates of <the amount of personnel effort
needed will require the combination of the above complexity
metric and the benefit of previous experiencz2 on siasiliar
pro jects. The metric can, to a large extent, predict the
amount of time required to understand a program, a factor
that is critical ¢to the proper conduct of adaptive mainte-
nance. This effort should be required each time the systea
is to be enhanced. The shortcoming of the model is the
requirement for a prediction of the frequency of enhance-
ments and their degree. The degree of alteration is a defi-
nite consideration as it will govern the time and effort
required to accomplish the changes. Major alterations will
take greater time and effort than will ainor ones, but a
large number of minor changes can easily outweigh one major
change in effart.

The omly present method used to estimate the
frequency of alterations regquired is experience. The degree
of enhancement should be divided, at least initially, 4into
major and minor. A major enhancement would consist of at
least the replacement of an old module of the system or the
addition of a nev one. A ainor enhancement would consist of
an alteration to a module in vhich either a line of code is
revritten or <rteplaced, or the module itself is rewritten

41

with its function remaining as it was prior to the modifica-
tion. Until further data is accumulated on the type of
enhancements conducted, this initial distinction should be
used to improve the estimation process.

Tvo methods are suggested for the use of the
complexity metric. The first would consist of simply multi-
plying the average time of all enhancements by the ratio of
the coamplexities for the naw system to the average complexi-
ties of all the previous systeas. The preferred method,
though, is to use the average time +to conduct the enhance~-
ment and the average complexity thereof broken out by the
enhancenent degree. Bach resulting average by enhancement
degree should then be aultiplied by the ratio of <the new
system's complexity to the average of the previous systea's
complexity and ¢the frequency of enhancements per project.
This formula is:

:E(na!L_x Niggj) . x(min) x N(min) ~

——— <>
E(aver. for maj) E(aver. for ain)

Al = Ex

vhere,
AM= total adaptive maintenance required in man-hours,
x(raj) = the average time to add a major enhancenment,
x(min) = the average time to complete a ainor emhance-
ment,
E(aver for maj) = the average complexity of major
enhancements using equation <6>,
E(aver for ain) = the average complexity of ainor
enhancesent s using equation <6>,
N(maj) = the average number of major enhancesents,
N(ain) = the average number of ainor enhancements, and
E = the complexity of the program using equation <6>.

42

A

N(maj) and N(min) can be used in the equation in two ways.
The first, as presented, is as the frequency that enhance-
ments of the tvo degrees have occurred in the past. The
other way could be to use an estimated number of enhance-
ments, if management has some idea of special circuamstances
in which these numbers will vary froam past events.

D. MODEL AGGREGATION

The entire maintenance effort required for the project
from time the system is accepted at the maintenance facility
can be calculated by adding the estimated corrective mainte-
nance workload tc the adaptive maintenance workload. This
yields:

T™M = AN + CHN <8>

vhere,
TN= total coamabined maintenance required in man-hours.

This result should yield an estimate of the total meinte-
nance effort required and needs to be subdivided into years
to be more useful to . management. One mnethod of accom
plishing this is to divide the total gmaintenance effort by
the estimated number of years remaining in the project.
This will yield a straight 1line average of maintenance that
fails to show any variations that normally present thenm-
selves later. Its advantage is that it is extremely simple.
Another method is to reevaluate the project yearly using the
above formulas and actual experience. This may prove infeas-
ible as the estimation need s to be conducted well in advance
of that year for budgeting purposes.

The last method for developing annual personnel regquire-
ments is to return to the components of maintenance. Worse
case corrective maintenance can be estimated as remaining at

43

least constant 3if not decreasing throughout the remaining
life of the software. The error rate will prove highly
dependent on the enhancement rate. It seems reasonable to
assume that, if a large number of enhancements are sade, the
systea's error rate will increase correspondingly. Thus,
the normal assumption that the error rate dJdecreases as the
project continues will not prove valid, if a sizeable number
of enhancements are made. Additionally, if no enhancements
are pwmade the error detection rate will never disappear
entirely and will remain much higher than expected., This
variation should be insulated against by utilizing ap annual
detection rate vhere the initial number of estimated bugs is
divided by the estimated annual detection rate. The esti-
sated annual detection rate can be estimated from the bug
detecticn rate established during the bebugging test.
Periodic retesting of ¢the system should be conducted espe-
cially vhen a major enhancement has been added to revalidate
the error detection rate.

The adaptive maintenance phase, at over seventy percent
of maintenance costs, accounts for the largest portion of
the software asaintenance budget in government activites
[Bef. 43]. Therefore, it is this area that demands the
greatest efforts to account for cyclic activity. Again, no
predictive ability for the nuaber of enhancements by type
exists in this model and the only method is to use data
obtained from previous projects to determine the enhanceament
rate at different stages in the maintenance phase. These
estimates, broken out by year, could then be added to the
anticipated corrective nmaintenance 1loading to obtain <the
annual figures to be used for planning. This nmodel does
develop a prediction of the quantity of resources required
to isplement each enhancement by type.

E. CHAPTER SUMMARY

The model has been developed considering the two
elements of maintenance as defined here, corrective and
adaptive maintenance. It has further been shown to yield an
estimation of the <total nmanpower requirements for <the
project from the time of assumption of maintenance responsi-
bilities. These figures have been manipulated <to provide
annual estimates of manpover requirements. Halstead's
effort metric and Gilb's bebugging provide the basis from
which the model was developed.

The largest requireament for this amodel, or any model for
that matter, is to obtain data with which the results of the
model can be calibrated and tested. The requirement exists
for the establishment of a data base on personnel expendi-
tures during the maintenance cycle. Without this data any
model developed cannot be tested fully. Additionally, ¢the
models developed will not be calibra*ed properly ¢to allow
for their fullest utility.

The model developed here has been designed to maintain,
to some extent, siaplicity in order <to allow it to be
employed in a working environment. It has been ocutlined so
that the reasoning should be evident, allowing managerial
personnel the capability to adjust it to fit their situa-
tion. The model is based on those concepts that have appa-
rently received favorable revieaws and have been esmployed in
other similiar situations.

IV. CONCLUSIONS

AS this research has shown, it is iaportant to establish
early in the life of a software project the desire to reduce
maintenance costs. With this commitment, the development
phase may take 1longer and cost more, but the 1long-term
results will be worth the extra effort. Maintenance costs
will continue to0 consume the largest portion of the
resources allocated to software systeas and only through the
conscientious application of the tenets outlined in Chapter
II can this portion be expacted to be reduced.

Most important of these tenets 1is the use of structured
design and structured programming to aid in the reduction
and identification of potential errors early in *he life of
the project. This is the time vhen they are least expensive
to repair. Reused code will provide benefits throughout the
entire life of the project by reducing devlopment and
maintenance costs by providing previously coded and tested
modules for inclusion in the software being developed. The
use of a high level language wvwill increase the
maintainabilty of the program by making it sore
understandable.

The estimation of the personnel requirements will aiad
management during the budgeting process. The number of
unplanned occurrences, such as exceeding budget limitations
or unexpected levels of maintenance, wvill decrease because
of greater coaprehension of the maintenance phase and its
components.

This model is a first attempt at developing a systea
that will estimate the personnel requireaents for
saintenance. It has been presented in such a manner as to

u6

(R

l

increase understanding of the items that affect maintenance
in both favorable and unfavorable ways. The reader is
encouraged to utilize the model and adapt it to his own use
by applying it to his own situation and requirements.

An important item to note is that a data base has to be
established tha* catalogs those iteas concerning the
sof tware that are important to the estimation and
understanding of <the software gmaintenance process. This
inforsation should include at least error detection rates,
correction times, nuaber of enhancements made as well as +the
estimated rates for each of these iteams.

47

2.

3.

4.

S.

LIST OP REFERENCES

igﬁafﬁiﬁféﬁﬁnaé“i - 9,154, S35}

Undervater Systeas Canter Techincal Repor

§§§§§§s§§ S R il g St B

Lientz, B. P. and Svanson, E. B., fey en
nanigsisnt e P. 105, Addlson-ﬂeslg%fingﬁ Majpntenange

hneid d .e
iﬁ g;g;f;ég,'Nagginggszgradu%%l §3§08§,§§§2r 5‘-395595

B S bl oo BRI R AT, Bremnaut 3

Ibid, p. 41,
Ibid, p. 42.

Lientz, B. P. and Swanson, E. B., Sofivare Maintepance
HaDagement, p. 68, Aldisoh-Hesiay, YoEUocc S3202202388

McClure Carma L. softwa v ent a
aintens ce, Van ﬁos%%ang g EE%IH E@o%%i%%?glﬁn- % Py

Ibid, p. 44.
Ibid, p. 45.

Military Standard HNIL-STD-1679 (NAVY
St iarl Berelarnenty “ B 5. Daceaber’ 19783020 Systen

Lientz, B. P. and Swanson, BE. e
n;ngggign;, p. 7, Addl oﬁ-wesley,§$§§vnzg Baiptepance

Lanergan Robert G. and Du an Denis K., M™Softwvare
Bngineerin with R2usable g and Codes," IEERE
gﬂ Fall . p. 296, Sap ember 1981,

Ibid, p. 303.

us

S e e g -

..........

16.

17.

18.

19.

20.

21,

22.

23.

24,

25.

26.

27.

28.

29.

30.

Gilb Tom '} + . 58 Winth
Pnblzshetg inc§9£§9;;? Hetrics, P ’ nthrop

Ibid, p. 85.
Ibid, p. 87.

Lientz, B. P. and Swanson, E. B. ftwar e
fisaceaent, 5.230 2m3759%%; XaafssnZREtraFe 8 nge

Ibid, p. 69.
Ibid' pc 15“.

Ibid, p. 68.

TRE Defense and Space Systeas Sroup, "Software Cost
Anal s and Estinating‘ ZB%ggggg stemns Software
Epgineeting s 20K, "SepTeabsr T 198Us

Rome Air Developaent Center RATC-TR-B1-1GQ{ "An
Evaluation of Software Zost BEstimating Models™, by
Robert Thibodeau, June 1381.

Shooman, Martin L., rPutorial on Softwvare Cost

Bodelsn, gorkshop 20 Quantitative sofivaze Hodels,

Air E g Aeronauticai Laboratories
A iAk-TR- Q- 1056 VO 11, redic*ive Software Cost
g de dy®, aby ughes Air—raft Company Support

i
H
ysteas, Juhe 1980.
Gilb
Pub

P sher o fncs 91} je Hetiics. p. 28, Winthrop

SRS Lot Rt R et

”ia?&‘? garse SE4, °

s . 37, Wint
Publishors. nc.91§§§;’ Hetrics, P v inthrop

Curtis, Bill Sheppard Sylvia B. and #illisan, Phil,

“Third’ rime Chara: ger Pri iction of Pro anler

Performance by Software OCdaplex £y Hetri tvage
peering, P. 358, Septeamber 197

49

' . 31,

32.

33.

34.

35.

36.

37.

38.

39.

40.

41,

u2.

43.

1bid, p. 358.

Gilb Tom twara - U6~-us8 Winthro
Puhlishers'In§?§‘13;7_5332195, Pp Wi 0

Military Standard MIL-STD-1679 (NAVY),

W syst
software Development, p. 19, Deceaber 1973008 212

Balstead Maurice H. t £ £
p. 47, Elsevier North'ﬂol%%%%?uT§7$T Softvare Science,

Ibid, p. 26.
Ibid, p. 27.
Ibid, p. 27.
Ibid, p. 27.
Ibid, p. 19.
Ibid, p. 47.

Curtis, Bill, Sheppard, Sylvia B., and ¥illiman, Phil,
nThird’ Time Charm: S£ronger Prediction of Prograammer
Pperformance by Software Conm laxit;guetrzc", Software

Engipeering, p. 358, September 19

Halstead Naur ice 4. ements of Softw b
p. 47, Elsevier uorth'aog 535?'T977§ Soft¥are jclence,

General Accounting Office, AFND-81-25, WFederal
Agencies! Maintenance of Computer Programs: Expensive
and Undermanaged”, p. 42.

3.

4.

S.

6.

7.

9.

10.

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Canter 2
Cameron tatign L.
Alexandria, Virginia 2231

Defense Loqistics Studies Information Exchange 2
0. S. Aray Logistics Manageaent Center
Port Lee, Virginia 23801

Librirgé Code 0142 2
Nava stgraduate School
Monterey, California 9394)

Code
T

o
9
Department Chairman d
Department of Naminisfrati
Naval Postgraduate School
Nonterey, California 93940

Department Chairsan, Code 52 2
Departaent of Cosputer Science

Naval Postgraduate, K School

Monterey, California 93940

Dr. Dan C, B geg,,qua 54BK 5
Degartaent of "Administrative Sciences
Naval Postgraduate School
fonterey, California 93940

LCDR Ronald godes, Code S2MF 3
Departaent of Computer Science

Naval Postgraduate School

Monterey, California 93940

LtCol. A. E. Burns, {II, gsuc
Marine co{ggoract ca

5S4 2
ve Sciences

Camp Pend n, Califarnia 92055

Comamandant of the Marire Corps_ (Code MPP-21) 4
ATTS: Captain W, H, Merring, III, USNC)
eadquarters, United States Aarine corps
Washington, b. c. 20381

51

